

Update on PNNL's Oscillation and High-Speed Measurement Research

October 23, 2024

Jim Follum

PNNL is operated by Battelle for the U.S. Department of Energy

- Natural Oscillations
 - Transient-robust mode meter implementation in SEL's Synchrowave Operations
- Forced Oscillations
 - Eastern Interconnection Situational Awareness Monitoring System (ESAMS) codeveloped with Electric Power Group (EPG)
- High-Speed Measurements
 - Plans for a distributed IBR monitoring platform built by GPA

Transient-Robust Mode Meter

Transient-Robust Mode Meter

- Mode meters continuously track the power system's small-signal stability margin
- BPA identified bias in mode meter estimates following system disturbances
- PNNL developed a modification to address the problem
- SEL implemented the modification in Synchrowave Operations

Example

Conventional Algorithm

Note: data was replayed; timestamps do not correspond to actual events

Eastern Interconnection Situational Awareness Monitoring System (ESAMS)

Eastern Interconnection Situational Awareness Monitoring System (ESAMS)

• Developed to:

Pacific

Northwest

- Introduce a common, high-level interconnection-wide view based on synchrophasor information
- Meet the need for improved coordination among **Reliability Coordinators (RCs)**
- Developed by Electric Power Group (EPG) and PNNL with leadership from Joe Eto at LBNL

"RCs should consider jointly developing interconnection-wide oscillation detection and source location applications..."

Initial Demonstration

- Hosted by PJM between June 2021 and March 2022
- Daily event reports distributed to seven reliability coordinator participants
- Real-time notifications for oscillations with amplitudes greater than 10 MW
- Identified research topics
 - Reducing configuration burden for many measurement locations
 - Ensuring real-time notifications are actionable
 - Value within a system operator's territory
 - Hosting options for long-term interconnection-scale deployment

Example of a daily report showing a large forced oscillation

tion	

	,
nfidence Level: Low	
	100 Million
	ISNE
	NTIS -
	/ _ 5
THE DI	M
1 8	
VA STA	
VA	
VA	CS
-4	
peo -	
201	
FRCC	
FREC	And
	0.01-0.15Hz Speed Governor
*********************	0.15-1.00Hz Inter-area Oscillations
	1.00-5.00Hz Local Plant Control Systems 5.00-14Hz Controllers

Iz; Oscillation Typ	e: Inter-area Oscillations
Peak to Peak Amp	litude Oscillation Band RMS Energy
17 MW	9 MW
12 MAN	7 MW
11 M/W	6 MW
	5 MW
5 IVIV	D MIV
	ň.
till aidd the	Ride data a
AND ALL AND THE	
- Faller	
	all future and the set
Time	
THINE	
THINE	
Time	
wer Group. All rights r	eserved.
wer Group. All rights r	eserved. t Confidentiality Agreement. Page 2 of 21

Current Southern Company Deployment

- ESAMS deployed using two complementary oscillation detection systems:
 - PNNL's oscillation analysis engine
 - EPG's Real Time Dynamics Monitoring System (RTDMS) Utilizes the RMS-energy detector
- Research topic: Configuring RMSenergy thresholds with minimal baselining and predictable performance
- New process has significantly reduced nuisance alarms

Thresholding Process

- Applied to two days of PMU data
- Bootstrapping
 - Build AutoRegressive (AR) models of each signal
 - Resample: generate many trials of synthetic ambient data for each model
 - Evaluate probability of detection at various oscillation amplitudes
- Choose threshold to avoid nuisance alarms
 - 3 MW oscillation \rightarrow 0.1% probability of detection
- Summarize performance with additional probabilities of detection for each signal:
 - 9 MW \rightarrow 50%
 - 11 MW → 90%
 - 15 MW → 99.9%

Next Deployment: Cloud ESAMS

- Potential advantages of the cloud
 - Avoids a single reliability coordinator having to host
 - Avoids multiple deployments with data exchanges among all participants
 - Readily expandable
- Plan
 - ESAMS will be deployed in ISO-NE's Amazon Web Services cloud environment
 - PMU data streamed from ISO-NE and PJM
 - Considered regions: ISO-NE, NYISO, PJM
 - 6-month demonstration to begin in coming months
 - If successful, additional participants will be invited to join
- Progress
 - Networking and application architecture designed
 - Successful coordination between ISO-NE and PJM for data sharing and cloud hosting
 - Input signals selected
 - ISO-NE has provisioned AWS accounts

Distributed High-Speed Measurement Platform for IBR Monitoring

Background and Motivation

- The Blue Cut Fire event highlighted the potential for reliability issues related to high-speed IBR behavior
- The North American SynchroPhasor Initiative (NASPI) working group identified high-speed point-on-wave (POW) measurements as a key technology for addressing these challenges

20-TR-004	
n re	
ED	

Background and Motivation

- A 2023 gap analysis found that seven years after the Blue Cut Fire event, utilities still have limited ability to use POW measurements for **IBR** integration
 - POW measurements typically only collected after specific triggering conditions, such as a fault
 - Continuous streaming prevented by expensive communication upgrades
 - Deploying specialized equipment in multiple substations for distributed applications is impractical
- These findings motivated the Wave Apps project

March 2023

JD Follum R Hoysapiar

Advanced Measurements for Resilient Integration of **Inverter-Based Resources**

PROGRESS MATRIX Year-1 Report

K Mahapatr A Riepnieks AJ Wilson S Chanda S Granda

PNNL-34089

- Objective: Develop and demonstrate a distributed measurement-based platform that enables operators to monitor and mitigate inverter-based resource (IBR) performance issues.
- Approach
 - Wave Apps consists of a central platform and distributed instances
 - POW measurements are analyzed within substations by distributed instances
 - Analysis results are streamed to the central platform for coordination, alarming, and visualization
 - Streaming will be comparable to a PMU, so existing networks can be used

- Four high-value applications will be developed and demonstrated
- The platform will be extensible to allow additional applications

Field Demonstration

- A three-month capstone demonstration will be performed at Salt River Project (SRP) in 2027
- Measurement hardware and substation computers to host distributed instances will be deployed at two substations
 - Only commercially available hardware will be deployed
- The central instance will be deployed on a server at an SRP facility

- Platform development
 - Dr. Christoph Lackner, GPA
- Application development
 - Dr. Shuchismita Biswas & Dr. Kaustav Chatterjee, PNNL
 - Dr. Bin Wang, University of Texas at San Antonio and ISO-NE
 - Dr. Hanchao Liu, GE Vernova

- Utility partners
 - Field demo: Salt River Project Matthew Rhodes
 - Testbed demo: Southern California Edison – Anthony Johnson
- Advisors
 - Dr. Slava Maslennikov, ISO-NE
 - Dr. Denis Osipov, New York Power Authority

The University of Texas at San Antonio[™]

18

Prototype Application: PMU with Trust Metric

- For curve-fitting PMU algorithms, error between measured and modeled waveforms can serve as a trust metric
- The STTP protocol that will be used for Wave Apps offers flexibility to stream the metric along with measurements

Prototype Application: Event-Triggered Streaming & Ride-Through Evaluation

Thank you

